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Abstract

Communities of interest are foundational to democratic representation in territorial constituencies yet

are often broadly- or un-defined. The ambiguity of definition and process of community identification

leaves practitioners, legal experts, and academics with relatively little clear empirical evidence from which

to draw reliable conclusions. This reveals a problem with governance in territorial districting, where a

foundational theoretical concept–the community as the centerpiece of representation–collides with prac-

tical limitations, including the characterization and identification of a community. To help mitigate and

explore this problem, I introduce a graph-based model of territorial communities based on assumptions

derived from available statutory definitions and use Census data to explore how communities can be rep-

resented, though the method is broadly extendable to a range of empirical characterizations of interest.

This novel approach to community identification builds on existing graph-based methods for computa-

tional redistricting to facilitate new theoretical research into the interactions between communities and

representation while providing a new tool to support practitioners’ needs in identifying communities.
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Introduction

Thirty-four U.S. states require the preservation of communities of interest in federal and/or state legislative
districts [Chen et al., 2022]. The theory underlying this criterion is that the preservation of a community
within a legislative district gives that community undivided political power, allowing members to organize
around salient issues and ideas, communicate concerns and preferences with political representatives, and
hold those representatives accountable. However, the identification of a community of interest–which is gen-
erally defined as a territorially contiguous community of people with distinct, shared interests worthy of
representation in a legislature–is challenging. Communities are subject to a range of competing perceptions
about their boundaries from those who live within the community, if those members even hold perceptions
on the topic. The ambiguity in most definitions provides constituents and citizens wide latitude to define
communities of interest, obfuscating the landscape for those who are responsible for drawing and adopt-
ing legislative districts. Compounding the effect, districting officials are tasked with sifting through what
information is available on tight budgets and timelines.

The inclusion of communities of interest as a legislative criteria is likely the consequence of conceptual-
izations of representation in the early United States, which could be traced back to Britain and even feudal
systems [Guinier, 1992]. When the House of Commons was established in England, the basic unit of repre-
sentation was the town, county, or shire [Stephanopoulos, 2012]. Before the Revolutionary War, American
colonies maintained the English system of community-based representation; in New England, townships were
the basis for representation in local legislatures, while counties and parishes were often the basis in the middle
and southern colonies [Zagarri, 1987]. By the mid-19th century, states gaining new admission to the Union
largely switched to using districts as the basis of representation rather than towns, though the administrative
community continued to influence criteria as many states adopted provisions to ensure that districts did not
cut across political subdivisions such as cities or countries [Stephanopoulos, 2012]. Unsurprisingly, this led to
many states malapportioning federal representation. Cox and Katz [2002] found that “[i]n the 88th Congress
(elected in 1962), 234 congressional districts deviated by at least 10% from the average district population
in their respective states, with the maximum deviation being 118% [Cox and Katz, 2002]” . Apportionment
for state legislatures were perhaps even worse. A particularly egregious 1962 Alabama districting plan parti-
tioned the state so that the “district in Jefferson County, which is near Birmingham, contained 41 times as
many eligible voters as those in another district of the state. [Oyez, 2022b]”.

A series of Supreme Court cases–Baker v. Carr (1962), Wesberry v. Sanders (1964), and Reynolds v.

Simms (1964), collectively referred to as the reapportionment revolution–subsequently transformed legislative
redistricting in the United States at both the state and federal levels. At the federal level, the Court in
Wesberry v. Sanders standardized the “as nearly as practicable” population requirement for congressional
districts, meaning that states have very little leeway in differences in population between federal legislative
districts–a deviation of over 1% from the ideal population could be justiciable [Stephanopoulos, 2013]. In
contrast, the Court found in Reynolds v. Simms (377 U.S. 533, 1964) that “mechanical exactness is not
required” [Oyez, 2022b] when drawing districts at the state level.

While these cases rightly put an end to egregious malapportionment within states, they altered the statu-
tory role of the community in the constituency. Administrative bodies–such as towns, cities, or counties–were
no longer the basis of districts and became secondary considerations instead, where many states strive to
preserve them within districts where possible. The preservation of communities of interest emerged as a
criterion to help maintain the important role communities play in representation, though the strict equal
population requirement often requires the division of communities of interest [Guinier, 1992, Webster, 2013,
Gimpel and Harbridge-Yong, 2020]. Indeed, partisan gerrymandering is often facilitated by splitting com-
munities under the guise of this rule in a practice aptly referred to as “cracking”. However, problems with
community identification make it difficult to fully analyze and characterize the extent of community splitting.

Practical Problems with Identification

Map drawers face a number of practical challenges facing in identifying community boundaries to preserve.
First, self-identification–generally in the form of public input sessions or map and descriptive text submissions
sent directly to map drawing authorities–is the primary means for identifying communities across state and
local governments. While this wisely accounts for what McCartan et al. [2023] call the “subjective” nature of
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the community, it also brings selection bias. For example, in a retrospective study, Rambo [2020] found that
well-organized citizens were far more likely to use the term “communities of interest” in public feedback than
citizens from the general public, including groups advocating for communities not traditionally associated
with districting protections. A randomized sample of 967 comments (around 13.5% of total comments made
from January 1, 2011 to August 15, 2011 to the CRCC) showed no feedback from large swaths of Los Angeles
County.

Where information is submitted, input is often conflicting [Rambo, 2020]. Individuals and groups that
submit perceived boundaries are–without any outside coordination–likely to disagree on final boundaries.
Figure 1 shows 6 different submissions to the 2020 CRC [We Draw the Lines CA, 2022] delineating Boyle
Heights, a predominantly Hispanic and Latino neighborhood in Los Angeles, CA. Note that the general area
is the same, but the specific boundaries vary significantly.

Figure 1: Six submissions to the 2020 California Citizen’s Redistricting Commission delineating Boyle Heights
as a COI. Composite generated from public submissions to the CRC [We Draw the Lines CA, 2022].

Furthermore, state definitions of communities of interest–some example of which are presented below
in Section –are often broad or vague. Indeed, Kim and Chen [2021] note that “the term [communities of
interest] is so open-ended that it can be used to justify abusive practices such as partisan advantage or
incumbent protection after the fact. [Kim and Chen, 2021]” Furthermore, the ambiguity in state definitions
can reward well-organized groups over groups that reflect more traditional conceptualizations of a community
of interest. For example, Rambo [2020] found that environmental advocates and suburban residents were
able to effectively leverage this ambiguity in the 2011 California redistricting cycle into preservation of
communities.

Finally, redistricting occurs under a number of time and budgetary constraints, which combine with a
flood of information to create a frantic environment that can overwhelm map drawers. In 2011, the California
Citizens Redistricting Commission (CRC)–the fourteen-person independent commission with partisan balance
that draws and adopts state and federal legislative districts in California–received “written submissions from
more than 2,000 organizations and 20,000 individuals. [Sonenshein, 2013]” The 2020 CRC website shows
over 35,000 public submissions [We Draw the Lines CA, 2022].
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The combination leaves map drawers–in addition to researchers, NGOs, and community advocates–with
little clear information available to identify the boundaries of communities of interest. Returning to California,
public feedback to the California Citizen’s Redistricting Commission (CRC) from the 2021 redistricting cycle
show 1,820 COIs PDFs and/or GIS shapefiles (around 5.14% of public submissions shown) submitted to the
CRC [We Draw the Lines CA, 2022], including those submitted using https://www.drawmycacommunity.

org1. These data on community boundaries were used to draw the 52 Congressional, 40 State Senate, 80 State
Assembly districts, and over 39 million people in California. These conditions can lead to the adoptions of
communities of interest that are reflective of the loudest voice in the room rather than the “true” community.

Systemic Community Identification can Mitigate Problems

Systematic evidence for the boundaries of communities of interest can mitigate these practical problems
by restricting the size of the community of interest search space and highlighting communities that are
otherwise not visible in public submissions while simultaneously and providing new evidence for academic
and theoretical investigation. Additionally, systematic evidence is reproducible and can be made transparent,
which can increase confidence in the approach used to delineate the boundaries. This additional information,
when presented in an accessible format, can help compensate for a lack of assessment capacity, reduce
uncertainty of boundaries due to conflicting public perceptions and a near-infinite uncertainty space outside
of feedback, and mitigate the impact of low resources for self-identification.

Furthermore, map-drawing algorithms play an increasing role in legal challenges to districting plans (e.g.,
see Rucho v. Common Cause [Oyez, 2022a], Harkenrider v. Hochul [New York Court of Appeals, 2022], and
South Carolina State Conference of the NAACP vs. Alexander [The American Redistricting Project, 2023]).
Indeed, map-drawing algorithms have even been referred to as the ”gold standard in partisan gerrymandering
cases. [Chen and Stephanopoulos, 2021]” These algorithms–which can also be used to evaluate tradeoffs in
representational outcomes due to criteria and in gerrymandering research–could better reflect redistricting
criteria in many states by explicitly incorporating communities of interest or rejecting maps that perform too
much splitting. Systematic identification of communities of interest can support improvements in legislative
map-drawing algorithms by providing a robust means to integrate community preservation. Systematic
evidence for communities could also better facilitate theoretical investigations into the relationship between
community preservation and representational outcomes of interest. For example, Gimpel and Harbridge-Yong
[2020] investigated the relationship between community preservation and competitiveness in Pennsylvania and
North Carolina, relying on “potential communities of interest” derived from economic hot spots and regional
identifiers. Computational communities would be well-suited to support these kinds of analyses.

There are a number of projects that aim to elicit community of interest boundaries from the public writ
large and aggregate them in databases (e.g., Redistricting Data Hub [2024], rep [2023]). For example, The
website Representable (https://www.representable.org) is an open-source collection project that allows
any user to draw community boundaries for their community, but this project also faces a small sample size;
each state only has a small number communities when compared to the population at large (on the order
of a tens to a few hundred). McCartan et al. [2023] have effectively used surveys in select cities to identify
communities of interest using kernel density estimators, though this reflects a highly specialized approach
that may not be generally feasible under the timelines or budgetary environment in which redistricting is
conducted.

It is important to emphasize that empirical and computational methods should not supplant public
input [Mac Donald and Cain, 2013]. Instead, they should supplement the tightly-constrained process of
COI identification [Sonenshein, 2013]. Providing systematic evidence about COIs reduces uncertainty by (1)
filling in information gaps on the boundaries of COIs when self-identification is absent, (2) providing a sort-
of validation test for single COI submissions, and (3) helping to sort through conflicting information when
multiple COIs are present. Providing information and implementation capacity in an accessible format–such
as an online tool and a script repository–helps provide policymakers and supporting analysts with the tools
to actually use the method.

1The vast majority of public feedback is classified by the CRC as “COI Input”, though many of these are textual descriptions
of community interests themselves and suggestions for other communities that should be included in the same district rather
than actionable boundaries.
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A Systemic Approach to Identify Communities of Interest

While a clear need for a systematic approach to community identification exists, there is no single, author-
itative definition from which an approach can be derived. Morrill [1987] defines communities of interest as
“territories within which people share a common sense of identity and value across a range of interests. [Mor-
rill, 1987]” Statutory and legal definitions vary significantly between states. For example, the Supreme Court
of North Carolina declared in 2002 that “communities of interest should be considered in the formation of
compact and contiguous electoral districts [Supreme Court of North Carolina, 2002, 562 S.E.2d 377]” without
providing a definition. Further north, the West Virginia state code requires that communities of interest are
taken into account when drawing state senatorial districts but provides no definition: “[t]he Legislature finds
and declares that... in dividing the state into senatorial districts... [it has] taken into account in crossing
county lines, to the extent feasible, the community of interests of the people involved. (West Virginia §01-2-
1(c)(5))”

Other states attempt to define communities of interest in terms of what interests may be considered, though
these definitions are varied and somewhat vague. Consider the following examples:

• Alabama “(a) A community of interest is a defined area of the state that may be characterized by,
among other commonalities, shared economic interests, geographic features, transportation infrastruc-
ture, broadcast and print media, educational institutions, and historical or cultural factors. (b) The
discernment, weighing, and balancing of the varied factors that contribute to communities of interest
is an intensely political process best carried out by elected representatives of the people. (Ala. Code
1975 §17-14-70.1) ”2

• California “[A community of interest is] a contiguous population which shares common social and
economic interests that should be included relatively a single district for purposes of its effective and
fair representation. (Art. XXI, §2)”

• Colorado “[C]ommunities of interest, including ethnic, cultural, economic, trade area, geographic, and
demographic factors, shall be preserved within a single district wherever possible. (Art.V §44(3)(b)”

• Montana “Communities of interest can be based on Indian reservations, urban interests, suburban in-
terests, rural interests, tribal interests, neighborhoods, trade areas, geographic location, demographics,
communication and transportation networks, social, cultural, historic, and economic interests and con-
nections, or occupations and lifestyles. [Montana Districting and Apportionment Commission, 2021]”

• New Mexico “[A community of interest is] a contiguous population that shares common economic,
social or cultural interests. (NMSA 1978, §79-3-B (2021))”

There are two clear common threads that can be used to identify modeling principles to which a systematic
approach should adhere. First, communities of interest should reflect territorial or geospatial contiguity.
Second, interest is often generally defined to include an array of social and/or economic interests. Given
the relative ambiguity of interest, any approach to community identification should reflect the principle of
interest elasticity–i.e., it should be versatile and adaptable to a range of different of empirical characteristics
of socioeconomic interest, including substantive policy preferences, demographics, political boundaries, and
even person-level interactions.

However, some key normative components of community formation are missing from statutory definitions
and the literature. While communities are contiguous, there is little to no discussion of how those contiguous
boundaries should be set in the presence of interest gradients. I propose a principle of local equilibrium–if
a community is identified along a single substantive or symbolic dimension (such as race or policy preference),
it should not be possible to extend its boundaries and preserve that interest as the community’s discerning
feature. Additionally, completeness–the assumption that all citizens live within a community of interest–is
untreated in the literature. Presumably all citizens can be said to live in some community that has interests
associated with it. In the early United States, some instances of corporate representation implicitly assumed

2Note: this definition was revised in 2023 (Alabama SB5) to remove the references to “ethnic”, “racial”, and “tribal” (see
Legislature [2021]).
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this to be true, as counties, parishes, or townships, which can practically partition states, were the basis
of representation ([Zagarri, 1987]). Finally, uniqueness specifies that communities are mutually exclusive
under a single parameterization. The key normative implication of this assumption is that citizens, under a
single dimension of interest, cannot live in multiple communities of interest at the same time. This is both
reasonable–a spatial model of preferences would disallow individuals from simultaneously occupying multiple
points in a spectrum–and reflective of practice: individuals that submit maps of their communities of interest
only submit one.

A Graph-Based Method to Identify Communities of Interest

Graphs, which are collections of vertices V and edges E that connect those vertices referred to as G = (V,E),
are particularly well-suited for identifying communities of interest in the context of the descriptive and
prescriptive assumptions identified above for two reasons. First, there is a robust literature dedicated to ana-
lyzing and identifying community structure on graph structures (e.g., see [Newman, 2006a, Fortunato, 2010,
Traag et al., 2011, Riolo and Newman, 2020], etc.). Second, geospatial partitions can easily be transformed
into graph representation. Under the method described herein, a legislative unit, such as a state, is treated
as a tessellation (or tiling), which induces a dual graph on the tiles. Then, some metric of likeness or strength
of connection is assigned to edges along that border each other, and the strengths of connection between
adjacent units are used to group units together using a community detection algorithm. Finally, grouped
elements are combined to identify communities of interest relevant to legislative redistricting.

These four steps are expanded upon below.

Step 1: Define a Tessellation

Let S ⊂ R
2 be a set representing the territorial extent of a state, and let T = {Ti}i∈I be a tessellation of the

state T (so that
⋃

i∈I Ti = S). Following the standard approach to drawing districts, where Census blocks
or precincts are grouped to form districts, the tessellation forms the basis of new communities of interest.
Therefore, the tessellation should be chosen so that each tile Ti is a cohesive entity worthy of community
representation–i.e., the tessellation should be of fairly high resolution. Counties and parishes, for example,
form tessellations of states yet are too large to constitute a community in and of themself. Furthermore, each
element of the tessellation should be associable with both population counts and population characteristics
relevant to community formation and legislative interests, and the population variance of the tiling should
be acceptable.

The U.S. Census Bureau maintains hierarchical tessellations of each U.S. state for the purposes of counting
and estimating populations and households every 10 years that largely satisfy these needs. The three levels
are blocks, block groups, and tracts (groups of block groups), and these units never cross county boundaries.
Census blocks are the lowest-level tiles for which population counts are available in the decennial Census.
However, the Census includes other important characteristics relevant to community formation when drawing
these tessellations. As the Census notes, blocks are “statistical areas bounded by visible features, such as
streets, roads, streams, and railroad tracks, and by nonvisible boundaries, such as selected property lines
and city, township, school district, and county limits and short line-of-sight extensions of streets and roads.
[United States Census Bureau, 2022]” Figure 2 demonstrates the key difference between blocks (panel B) and
precincts (which also act as a tessellation, panel A) in an area of Ohio centered near Painesville.
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Figure 2: Choropleth maps of Hispanic VAP at the precinct level (A, top) and precinct with select blocks
shown (within blue boundaries, B, bottom) near Painesville, OH.
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Ohio State Route 2 is clearly visible in both panels, but only the block-level tessellation is composed of
individual blocks associated with the freeway, which can divide communities. This phenomena reflects an
important concept in transportation geography known as community severance, which is the “variable and
cumulative negative impact of the presence of transport infrastructure or motorised traffic on the perceptions,
behaviour, and well-being of people who use the surrounding areas or need to make trips along or across that
infrastructure or traffic. Mindell et al. [2017]”

Depending on the data used to represent interest, different tessellation resolutions come with different
risks. The use of high resolution data, such as individual census responses or geolocation data, could elevate
the risk of re-identification of participants. This is less of a problem when using Census data, as the Census
takes care to add statistical noise to high-resolution population estimates to protect against reidentification
while preserving the aggregate population characteristics of a state3, but individuals should take care if using
datasets associated with potentially personally identifiable information.

Step 2: Derive the Dual Graph

A dual graph of a tessellation is a graph where each Ti ∈ T is associated with a vertex vi on a graph
[West, 2001], and adjacency between vi and vj obtains when Ti and Tj share a border. To ensure contiguous
communities, it is important that the border contain at least a line segment, or so called “Rook” adjacency.
If tiles could intersect at only a point–i.e., “Queen” adjacency–then communities could contain impassable
corners, which would violate common statutory definitions of communities of interest. Units E and I in
Figure 3 give an example of Queen adjacent tiles; if they were considered adjacent, it would be possible to
draw a community that contains only those two nodes, which would violate practical contiguity.

Note that it may be necessary or best practice to prune the graph to remove edges that are known to
represent invalid community connections. A common example where this may be necessary occurs in Census
blocks that contain islands; in many cases, the block may border a wide range of blocks, though the land
mass is centered closely to only a few of these. Pruning these ties can significantly improve the ability of this
method to reflect territorially communities.

Step 3: Set Edge Weights Using Empirical Data

Edge weights are numerical values assigned to edges that represent a strength of connection between adjacent
vertices with respect to some sociopolitical interest. This strength of connection can be determined using
various empirical data, and different interests may be better represented by different datasets. Let ϕ(vi, vj) ≥
0 be used to represent some function that defines the edge weight between units i and j. The more closely
that i and j are related–which can be guided by data and modified to reflect a range of relationships,
including similarities, probabilities of interactions, and binary relationships (e.g., if i and j located in the
same administrative region)–the higher the value of ϕ should be.

Step 4: Apply Community Detection Algorithms and Dissolve Community Poly-

gons

Community detection algorithms are then used to identify community structures that arise from a combina-
tion of graph topology and edge weights. Communities on a graph are generally collections of vertices that
“cluster into tightly-knit groups with a high density of within-group edges and a lower density of between-
group edges. [Newman, 2004]” These algorithms create a partition X̂(β) = {X̂k(β)} of the graph G given
some parameterization β. A partition follows the uniqueness and completeness assumptions delineated above.

There are several approaches and algorithms available to model community structure. A comprehensive
review of community detection algorithms conducted by Yang et al. [2016] compared the computational per-
formance of 8 algorithms–Edge Betweenness [Girvan and Newman, 2002], Fastgreedy [Clauset et al., 2004],
Louvain/Multilevel [Blondel et al., 2008], Label Propagation [Raghavan et al., 2007], Infomap [Rosvall and
Bergstrom, 2007], Leading Eigenvector [Newman, 2006b], Spinglass [Reichardt and Bornholdt, 2006], and

3See the U.S. Census United States Census Bureau [2021a] for more information on Census statistical safeguards.
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Walktrap [Pons and Latapy, 2005]–and found that the Louvain/Multilevel algorithm outperformed all others
consistently on larger graphs. Community detection at the block level can include hundreds of thousands of
nodes and millions of edges, so high-performing algorithms are desirable. However, the Louvain algorithm
uses modularity, which suffers from the resolution limit [Fortunato and Barthélemy, 2007]. Furthermore, the
Louvain algorithm does not guarantee contiguity.

Instead, the later Leiden algorithm [Traag et al., 2019], which guarantees contiguous community parti-
tions and performs as well or better than the Louvain algorithm computationally, was selected. The Leiden
algorithm minimizes the Constant Potts Model [Traag et al., 2011], given as

H = −
∑

k

(ek − γn2
k), (1)

where ek =
∑

ij Aijwijδ(σi, k)δ(σj , k) is the total edge weight contained in community k, σi is the community
to which vertex i is assigned, δ is the Kronicker Delta function, and nk =

∑

i δ(σi, k) is the number of nodes
in community k.

The CPM (1) also contains a resolution parameter, γ, that reflects the important principle of scalability
identified by Chen et al. [2022]–in short, communities of interest may differ with the different scale of gov-
ernment, as different levels of government have different authority over different relevant interests. Smaller
values of γ reduce the penalty for including more nodes in a community c, while continuing to reward edges
contained within the community, leading to larger (lower resolution) communities. As γ increases, the CPM
penalizes the number of nodes, leading to smaller (higher resolution) communities.

Figure 3: Example of tessellation with contact graph (A, left) and subsequent community identification using
community detection algorithm (B, right). Edge thickness represents hypothetical strength of connection
while colors indicate community cohabitation.

Community detection is a combinatorics problem, and most algorithms converge to local optima instead
of a true global optimum. The Leiden algorithm in particular takes a greedy approach, achieving a local
optimum by iterating until the value of the objective function does not improve by more than some small
tolerance ε in successive iterations. In larger graphs, this can lead to relative instability in the solution given
a fixed parameterization β, a problem identified by Riolo and Newman [2020].

To improve the stability and reproducibility of community orientations, I use a frequentist approach, which
I call cohabitation frequency, to identify edges that are found to be within the same communities with some
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probability α ∈ [0, 1] (I set α = 0.98 based on tests in Ohio and California). Cohabitation frequency leverages
different random seeds to obtain different local optima under the same parameterization β–the community
detection algorithm is run to convergence R times with the same parameterization. Edges that are not con-
tained within the same community at least ⌈αR⌉ times are dropped from E to form E′; the resulting edges
E′ are combined with vertices V to defined the cohabitation frequency subgraph G′ ⊆ G. The connected
components {Ck} of G′ are then the collections of tiles making up communities of interest. A more detailed
description of the cohabitation frequency approach is available in the supplementary materials. The use of
cohabitation frequency communities to identify communities of interest ensures that the resulting communi-
ties are “strong”, ensuring that the edges and vertices that comprise each community are reliable cohabitants.

Once the graph partition C(β;α) is identified, the geospatial extent of the kth community C̃k ⊂ R
2 is

found as the union of all tiles Ti associated with vertices in the community. This process is referred to as
disolving the tiles–i.e., C̃k =

⋃

vi∈Ck
Ti, so that C̃k ⊂ S are polygons. Collectively, I refer to the set of

communities C̃k as a community orientation map. The community orientation maps are the primary product
of interest for policymakers and community advocates (e.g., in the form of GIS products such as shapefiles,
GEOJson, etc), though weighted graphs and vertex assignment tables (VATs), which represent C(β) in long
form are also useful in analysis and algorithm integration.

Other methods for identifying COIs quantitatively have been proposed in the literature. For example,
Rossiter et al. [2018] generated communities of interest using Thessian polygons and, somewhat similarly
to the approach discussed herein, geospatial clustering of block groups based on the minimum spanning
tree method of AssunÇão et al. [2006]. However, the method described herein takes a more graph-centric
approach, allowing for characterizations of interest using novel data and scalability on tessellations, while
also clustering based on well-established notions of community structure on graphs. Other approaches to
identifying communities of interest have looked beyond the constraint of geospatial contiguity; for example,
Vaghefi and Nazareth [2016] used Twitter data to identify communities of interest in social media, while
Makse [2012] combined factor analysis with initiative voting records.

One key advantage of the graph-centric approach taken herein is that a representation of a state as a graph
is common in many redistricting algorithms (e.g., Duchin and Tenner [2018], Cannon et al. [2022]). This
connection allows for the relatively seamless integration of communities identified using this method with re-
districting algorithms, helping to fill an important void in these ever-critical algorithms through a number of
potential means, including providing weight information for algorithms to include; adding community vertex
membership as information to search algorithms (which can be used to inform heuristic decision-making); or
characterizing community splits in ensembles of districting plans in the context of exploratory modeling.
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Data

Tessellations of each state that are delineated in Census TIGER shape files. The Census 2020 TIGER shape
files include block, block group, and tract level, form the basis of all communities of interest identified in this
paper4. These data were used to infer the contact graph for each state using Julia scripts included in online
supplementary materials.

I used three datasets to quantify one characterization of sociopolitical interests, referred to as similarity.
First, two socioeconomic datasets from the Census Bureau–the Public Law 94 (PL94) and 2016-2020 5-
year American Community Survey (ACS5)–were used to calculate edge weights representative of shared
socioeconomic interests under the similarity approach. The Census PL94 dataset includes population counts
by race, (2) ethnicity, and (3) citizen voting age population at the Census block level, the highest publicly-
available resolution. Second, the 2016-2020 ACS data contain estimates of populations by language spoken
at home, household income bracket, education attainment level, industry, and more at tract and block group
levels. These datasets are aggregated to Census tessellation levels, meaning that no secondary estimation is
needed to map socioeconomic data to each tile.

Additionally, an exploration of calibration and validation relies on empirical community of interest map
submissions taken from the Representable project [rep, 2023], a free and open repository where anyone
can submit a community map, The Representable project stores user submissions of polygons delineating
boundaries and associated descriptions of communities of interest. These data are stored in the form of
GeoJSON files that can be downloaded directly from the site. For the calibration, data were obtained for
the state of Ohio in August 2022.

42020 Census geometry shapefiles are available for each state from the Census FTP repository [United States Census Bureau,
2021b].
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Characterizing Interest Using Socioeconomic Similarity

There is no unique measurement that can quantify the mosaic of potential sociopolitical interests, though
socio-demographic similarity is a reasonable first-step. This approach is rooted in the assumption that people
who signal similar backgrounds and lived experiences are likely to share interests pertinent to those shared
realities. There are some examples that support this assumption; for one, race has been used in the United
States to restrict and prevent political participation of voters. Individuals of the same race likely share some
interests in the face of issues like redlining and environmental racism, which have lasting effects on the wealth
and health of minority communities [Aaronson et al., 2021]. Language and culture are also important to in-
terest; Spanish and Vietnamese speaking citizens, for example, are entitled to access to ballots in Spanish
and Vietnamese, and cultural norms or experiences relevant to representational interest can sometimes be
captured using language as a proxy for culture. Language may even shape political preferences and opinion
by affecting the structural mechanisms through which we perceive the world [Pérez and Tavits, 2022]. Beyond
these, educational attainment, education status, and income are just some measures that act as proxies for
other interests relevant to representation.

Socioeconomic characteristics are paired with the graph by associating each vertex with characteristic vec-
tors. Each socioeconomic class–such as race, ethnicity or language–is associated with a characteristic vector.
Similarity between adjacent vertices i and j along any of these socioeconomic spaces are then represented
geometrically by determining the angle between i and j’s vectors. A characteristic vector χi ∈ R

M associ-
ated with vertex i has elements χim associated with dimension m of the socioeconomic space. Elements of a
characteristic vector can be given as a population or as a proportion, though all vertices must use the same
convention. Proportions are useful when downscaling values from lower resolution surveys–e.g., when using
block group or tract data at the block level. For adjacent vertices i and j, the cosine similarity

sij = cos θij =
χi · χj

||χi||||χj ||
, (2)

is the cosine of the angle between these characteristic vectors, θij .

Cosine similarity is desirable for a few reasons; first, it is easily comparable across tiles with disparate
populations, such that sij ∈ [0, 1] for 0 ≤ θ ≤ π/2 (χi ≥ 0). Furthermore, when characteristic vectors have
the same distribution across a socioeconomic space, they are colinear, or entirely similar, and cos(0) = 1.
Orthogonal vectors, which share no non-zero elements, take on the value cos

(

π
2

)

= 0 and hence are entirely
dissimilar. However, in some graphs, cosine similarity can lead to relatively low variance in edge weights,
potentially reducing the value of edge weighting in community detection algorithms. In so, it may be prefer-
able to highlight differences between adjacent vertices using a linear relationship between the angles, and so
the normalized angle

g(χi, χj) = 1−
2

π
θij = 1−

2

π
arccos

χi · χj

||χi||||χj ||
(3)

can be used. The function g has the same desirable properties as cosine similarity–but with a higher degree
of variation when θij is close to 0 or π/2 since g is linear in θ. The normalized angle score was used to
generate illustrative results discussed herein.

Of course, communities are often dependent on multiple interests. Multiple types of interest can be in-
tegrated into a single edge weight using different aggregations; for example, a simple approach would return
a weighted mean of similarities across all dimensions d, i.e.,

ϕij =
1

W

∑

d

wds
(d)
ij , (4)

where s
(d)
ij is a similarity function applied to each dimension d, wd ≥ 0 is the weight applied to dimension d,

and W =
∑

d wd is the total weight. Of course, other aggregation functions can be used to generate the edge
weights ϕij , and each function might carry a different interpretation.
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The choice of socioeconomic spaces and dimensions within it are important to consider when using simi-
larity. The spaces of sociopolitical interest should be conceptually independent–e.g. age, ethnicity, race, sex,
language spoken at home, income, education, jobs and industries, etc. are all components of interest relevant
to representation. Individuals who identify with the same race may be more likely to hold similar views
about certain interests, though if they are in very different income brackets, they may hold different views
on taxation and government spending. Furthermore, within each interest space, categories should be divided
in a way that appropriately captures differences in interest. For example, within age, dividing children by
pre-school, elementary, junior high, and high school (¡18) age is likely more relevant to representational in-
terests than arbitrarily grouping them into pairs of years. This becomes less obvious with adults, as there
are a myriad of potential interests that could be represented by different aggregations–for example, 18-20
year olds are adults, but many states permit new behaviors when these adults reach 21. At the age of 65,
benefits from a number of entitlement programs, such as Medicare and Social Security, become available for
citizens and taxpayers. The Census includes some reasonable aggregations in the ACS5 that reflect some of
these logical groupings (e.g.,18-20, then 21-24, 25-34, 35-44, etc).

Similarity Communities

To demonstrate the behavior of the similarity score approach, I will explore how similarity communities be-
have in Ohio under different assumptions about socioeconomic similarity. These communities were generated
using a Julia codebase that leverages the iGraph C package [Csardi et al., 2006] for community detection and
is freely available at https://www.github.com/**REPOHERE**. The codebase facilitates analysis at block,
block group, and tract levels for any of the 50 states. Additionally, a public facing interactive tool that can
be used to explore communities derived from similarity scores in different states is under development. Sim-
ilarity scores were calculated using a combination of socioeconomic population counts and estimates taken
from both Census PL-94 population counts and 2016-2020 American Community Survey 5-year estimates.

Figures 4 and 5 demonstrate how tiles data are used to generate similarity scores and assign edge weights;
they show the race similarity graph near Valley View, Ohio overlaid against Census block population densities
for black and white racial identities, respectively. Other racial categories (with the exception of two or more
races) do not have significant populations in the region. Representative vertices are shown as dots5, and their
position is only used to illustrate how they represent an associated tile on the map. Edges are also shown;
gold edges on the graph are associated with at least one vertex with no population (meaning similarity was
set to 0.5), while dark gray edges were calculated using similarity between the adjacent tiles. The thickness
of the edges is set using the similarity edge weight.

5Note that some vertices may be shown outside the boundaries of the tile they represent since they are associated with the
crude tile centroid.
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Figure 4: Dual graph near Valley View, Ohio with Race (PL-94) similarity edge weighting and the fraction
of each block that identified as Black alone.
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Figure 5: Dual graph near Valley View, Ohio with Race (PL-94) similarity edge weighting and the fraction
of each block that identified as White alone.

The region near Valley View, Ohio is notably segregated, making it useful for illustrating graphs and
similarity scores due to dissimilarity between adjacent blocks. The population living in the western half
of the figure (tract 390351929)–has a high density of persons identifying as White (1,792 out of1,897 peo-
ple, ≈ 93.94%). In contrast, the population living in the eastern tracts is less White: tracts 39035154501
(≈ 43.46% White, ≈ 48.10% Black), 39035154502 (≈ 39.11%, 51.51%), 39035154601 (≈ 33.85%, 47.54%),
39035154603 (≈ 42.11%, 50.49%), and 39035154604 (≈ 42.21%, 49.89%) are minority-majority, and several
are Black-majority.

Two blocks–L1 = 390351545021001 and L2 = 390351929001020 (2020 FIPS block codes) reveal the simi-
larity edge-weighting calculation intuitively. In the diagrams, populated blocks that are next to each other
with highly-contrasted coloring for each of the racial categories should show thinner edges between them due
to dissimilarity. Blocks L1 and L2 are clearly dissimilar across racial categories of Black and White, as L1

has a high proportion of residents that identify as black (≈ 72.04%), while L2 has a very high proportion of
White-identifying residents (≈ 90.12%); this compositional difference leads to a low edge weight, shown as a
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relatively thin edge on each figure.
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Figure 6: Community boundaries for γ = 0.000075 and α = 0.98 drawn using race only (panel A) and
ethnicity only (panel B) near Valley View, Ohio. Maps generated using Dave’s Redistricting App [dra, 2022].
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Figure 6 shows how the graphs shown in Figures 4 - 5 translate into communities of interest for a resolu-
tion of γ = 0.000075 and a cohabitation frequency threshold of α = 0.98 on the block-level graph in Ohio.
Each map shows different communities of interest (colored arbitrarily to distinguish between them) along
with dots, each of which represents a few hundred residents of a different race/ethnicity combination [dra,
2022]. The communities are oriented quite differently in each case, reflecting the effects of the underlying
data on community boundaries.

Note that the race-only community detection reflects the clear racial dissimilarity evident in Figures 4 and 5,
as COI-3559 and COI-3979 have two distinct compositions, with COI-3559 having a much higher Black pop-
ulation (13,444/21,901≈ 61.4% Black, 7,333/21,901≈ 33.5% White) than COI-3979 (37/1,898≈ 1.9% Black,
1,763/1,898≈ 92.9% White), which is primarily White. Similarly, COI-3431 (12,259/20,665≈ 59.3% Black,
7,274/20,665≈ 35.1% White), and COI-3481 (9,976/10,421≈ 95.7% Black, 223/10,421≈ 2.1% White), are
split, reflecting the greater diversity of COI-3431.
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Figure 7: Comparison of communities drawn using a single solution from the Leiden algorithm in Ohio (top)
versus communities drawn using R = 100 and α = 0.98 (bottom).

Finally, the impact of cohabitation frequency is illustrated at the state level in Figure 7. Cohabitation
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frequency approach can lead to high variation in community sizes for a single resolution parameter; in
practice, denser, well-defined community structures often emerge from those associated with cohabitation,
while a number of “floating communities”–smaller collections of vertices that are often rural, unpopulated,
and/or associated with infrastructure like U.S. Interstate highways (see 7)–surround them. These floating
communities–which are only consistently reflected in the cohabitation frequency communities–often reflect
well known barriers to community formation.
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Validating Computational Communities

The approach to identifying communities of interest taken herein is fundamentally a model of community for-
mation, and it is critical to understand the conditions under which model outcomes can be trusted to inform
valid use cases–does the model represent what it claims to represent? The validation of a model of community
formation in particular presents numerous challenges. There is no single ground truth to which computa-
tionally generated communities of interest can be compared to consistently establish validity if any ground
truth is available (e.g., conflicting submissions in Figure 1). Even in the presence of empirical communities,
the quality of information may differ considerably between available boundaries. For example, community
boundaries drawn by well-organized community advocacy groups that incorporate feedback, comments, and
perspectives from community members are likely to be of higher quality than an arbitrary test map.

However, in some cases, self-perceptions of community boundaries align well from different sources, cre-
ating an opportunity to evaluate what Adcock and Collier [2001] refer to as convergent or discriminant

validity. In doing so, we ask the question, “[a]re the scores... produced by alternative indicators... of a given
systematized concept... empirically associated and thus convergent? [Adcock and Collier, 2001]”

Alignment with Self-Reported Communities

An obvious approach to validation of any model involves modifying parameters to align model estimates with
empirical observations in a process known as calibration. This method for validation is somewhat weakened
in the absence of an authoritative set of communities of interest, though it helps establish both nomological
validity and convergent validity by answering the question: under calibrated conditions, does the systematic
approach to community identification correlate with other information about where a community of interest
is located?

The construct of community alignment can be conceptualized using different characteristics of a com-
munity. A method-drawn map can be aligned with a self-reported community on the basis of area alone,
reflecting that a systematically-constructed community of interest reflects the territorial extent of the self-
reported community. Alternatively, a method-drawn community might be considered to align well if it
preserves the same population. The selection of one one measure over another has normative implications.
For example, a self-reported community may intentionally include certain points of interest or landmarks,
such as a park, stadium, or airport, as part of the basis of the community that population alignment might
miss, while others may include boundaries that extend beyond key population centers to include space that
isn’t critical to the interest that the community seeks to coalesce.

To help establish validity, I demonstrate a calibration of computational communities of interest to an
empirical baseline using two quantifiable requirements to characterize alignment. First, any map that aligns
well with a self-reported target community of interest should minimize splitting of that community. Sec-
ond, overlapping communities that align well should be associated with similar measures (such as area or
population).

To quantify splitting, Chen et al. [2022] introduced the effective split index (ESI) and uncertainty of

district membership (UDM) in support of a quantifiable standard of community splitting by districting plans.
Here, method-drawn maps are treated as districts, while a self-reported community of interest is treated as a
target. The metrics introduced by Chen et al. [2022] are generalizable to arbitrary measures µ6 defined on T
and, therefore, any method-drawn communities X that are collections of tiles. For the following definitions,
let C be a method-drawn community orientation map (the overlay), and let X ⊂ R

2 be target empirical
community to which C will be compared (the target). If K(X,C) = {k ∈ K : Ck

⋂

X ̸= ∅} is the index set
of all overlay communities Ck that intersect community X, then

pk(X,C;µ) =
µ(Ck

⋂

X)

µ(X)
(5)

is, for an arbitrary measure µ, the fraction of the measure of Ck and X out of the measure for empirical
community X. The effective split index s(X) of a community X is defined by Chen et al. [2022] as

s(X,C;µ) =
1

∑

k∈K(X,C) pk(X,C;µ)2
− 1, (6)

6See supplementary materials for a brief discussion of measures.
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while the generalized uncertainty of district membership–which is the two-bit Shannon entropy of the measure
space implied by the overlay C–is given by Chen et al. [2022] as

u(X,C;µ) = −
∑

k∈K(X,C)

pk(X,C;µ) log2 pk(X,C;µ). (7)

However, community splitting alone is inadequate to identify community alignment–a very large commu-
nity, for example, might avoid splitting a target if it wholly contains that community. To compensate, I use
what I call the average overlay tile ratio (AOTR)

a(X,C;µ) =
∑

k∈K(X,C)

pk(X,C;µ)
µ(Ck)

µ(X)
. (8)

The average overlay tile ratio is used to characterize measure equivalence between overlaying communities and
a target empirical community. The final calibration metric–Manhattan AOTR, or MAOTR 7)–m compares
the distance of a from 1, i.e.,

m(C,X;µ) = |1− a(C,X;µ)| . (9)

The three metrics s, u, and m were applied to two measures associated with each method-drawn commu-
nity Xk in an orientation map and each target empirical community C: area (from Mollweide projection)
and total population (estimated using block-level Census data in empirical communities).

To demonstrate how to identify parameterizations of algorithms that align well with empirical commu-
nities, I drew 30,000 community orientation maps in two stages using similarity scores with 13 parameters,
including γ, β, and weights for the 11 socioeconomic factors shown in Table ??. The first 20,000 maps were
used to narrow parameter ranges and identify collections of parameters important to good alignment, while
the second set of 10,000 was used to explore convergent validity and factors associated with good fits.

7See the supplementary materials for a detailed discussion of AOTR and M-AOTR
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Figure 8: Selected points on calibration Pareto frontiers and associated maps with comparison to Repre-
sentable “Akron North Hill Community” target [rep, 2023].

Figure 8 shows a subset of 112 layered Pareto fronts taken the larger set of 20,000 runs along with three
community orientations taken from the front, each demonstrating how the calibration metrics characterize
alignment. The empirical Akron North Hill Community (the target) is shown in darker gray in each of panels
A, B, and C, while method-drawn community orientation maps are shown in lighter gray. Panel A illustrates
a low-MAOTR, high-split ((m̄, s̄) = (0.0184, 0.717)) community orientation. Notice that the communities
intersecting the target are of roughly the same size, but there are two clear splits within the community.
Panel C, on the other hand, demonstrates a high-MAOTR, low-split ((m̄, s̄) = (28.008, 0.0)) community
orientation. In this panel, the empirical community is totally preserved, but it is wholly contained in another
community that differs vastly in scale. Finally, panel B reflects the calibrated region: low-split, low-MAOTR
((m̄, s̄) = (0.526, 0.0106)). Here, the empirical community is contained within a larger community, but there
is very little splitting. Closer inspection of the component MAOTR values reveals that close alignment in
population drives the community fitting the calibration mAREA = 0.787,mPOPULATION = 0.266 reflect a
fairly close population fit, even if the area is somewhat larger than that of the empirical Akron North Hill
Community. Furthermore, among sAREA, sPOPULATION , uAREA and uPOPULATION–only uPOPULATION

exceeded 0.0011 (≈ 0.0345), reflecting the minute splitting that occurred when overlaying the calibrated
community orientation map against the target community.

The calibration dataset also allowed for the exploration of another question related to convergent validity:
what factors, if any, lead to a good fit of the community orientation map and the empirical community, and
how do those factors compare to the description of the community? To explore this question, I reduced
the space of component similarity dimensions to six socioeconomic factors–Age, Educational Attainment,

23



Household Income, Language Spoken at Home, Race, and Ethnicity–and generated 10,000 community ori-
entation maps using random weighting of socioeconomic similarities. Weights of the individuals similar-
ity dimensions were log-normalized on the probability simplex to improve the uniformity of the sampling
space, i.e., the weights wd were calculated as wd = log xd∑

d∈D′ log xd

. Furthermore, I refined the definition of

good fit to place bounds on individual measures so that mAREA < 1.433, mPOPULATION ≤ 0.488, and
sAREA, sPOPULATION , uAREA, uPOPULATION ≤ 0.01. The bounds for m were chosen based on author
judgement and visual inspection of the component distributions of MAOTR. The threshold of 0.01 used for
component expected split index and uncertainty of membership metrics are fairly restrictive, as “[f]or any
given community, uncertainty of greater than 0.5 bit may be considered substantial. [Chen et al., 2022]” The
bounds were more restrictive than the 25th percentile of each metric’s distribution.

I then used the Patient Rule Induction Method (PRIM) [Friedman and Fisher, 1999] and Classification
And Regression Trees (CART) [Breiman, 1984] supervised learning algorithms to characterize ranges of
socioeconomic similarity weights that correspond with a good fit and compare those to the description of
the community. These algorithms work by generating decision trees and input regions that explain a labeled
space, generating tradeoffs in density (the fraction of cases within the region that match the condition) and
coverage (what fraction of all cases are explained by the region). The Representable community “Akron North
Hill Community” is described by the submitter as an “Immigrant and refugee Asian community in Northeast
Ohio” [rep, 2023]. This description highlights three key quantifiable components of identity relevant to
community formation–immigrant status, refugee status, and race, specifically the Census grouping of Asian.
The data used in this exploratory analysis did not include data on immigration status or refugee status–
though the Census does estimate population totals by immigrant status in the ACS at the tract level–leaving
race as the only quantifiable, comparable component.

The exploratory analysis revealed that race is an important component of community orientation maps
that reflect the population and boundaries associated with the individual submission. CART (restricted to
three dimensions) and PRIM both determined that the resolution γ (CART: γ > 3.626e-5, PRIM: γ > 3.5e-5)
and the weights of ethnicity (CART: wethnicity < 0.2815, PRIM: wethnicity < 0.29) and race (CART: wrace >
0.133, PRIM: wrace > 0.136) were important to explaining good fits. Notably, over 70% cases require the
normalized weight of race to be greater than 0.133.
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Figure 9: Density of Asian (panel A), Black (panel B), and White (panel C) populations along with race
similarity graph (panel D) in the area surrounding “Akron North Hill Community” [rep, 2023].

Figure 9 shows the density of Asian, Black, and White–the three most prevalent racial categories in the
area north of central Akron, OH–populations by Census block along with the block-level race similarity
graph. It is unsurprising that high weights for race similarity are not associated with higher density and
coverage; even though the “Akron North Hill Community” includes “Asian” as a defining component of the
community, Figure 9 shows that the distribution of individuals identified as Asian is not dissimilar to the
east of the community area. The upper bound on ethnicity is also not surprising; the area is characterized by
ethnic homogeneity, reducing the value of ethnic similarity in defining this particular community. However,
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relative significance of racial similarity as a dimension aligns partially with the individual’s description of the
community and an encouraging component of convergent validity.

There are some important limitations to this exploratory validation. First, the region determined by
CART and PRIM covers 73.3% of all acceptable fits with 24.2% density. The background density of acceptable
fits is 8.93%, meaning that this region has about a 2.7x higher rate of acceptable fits than the larger dataset.
However, this also means that 75.8% of cases within the box are not acceptable fits, and so it’s inadequate to
explain what constitutes a good fit. Furthermore, the empirical baseline community reflects one individual’s
perceptions about the boundaries of a community, and the quality of that submission or how truly it reflects
the individual’s perceptions or the perceptions of the community itself is impossible to verify. Additionally,
this validation was not intended to systematically evaluate how well method-drawn communities reflect
empirical submissions; instead, it is intended to support validation by showing it can closely reproduce some
reasonable available empirical baselines. A more thorough analysis could help identify factors important to
community formation on a broader scale.

Valid Use Cases

Calibration to an empirical community boundary provides some information on measurable factors and
covariates that influence how that individual perceives their community. However, a single empirical baseline
should not be used to parameterize a map for an entire state. In practice, community self-reporting is highly
specialized, informed by experiences, preferences, mobility, and firsthand knowledge of place. One individual’s
perceptions do not extend to the population at large and may not even extend to the same individual when
living in a different location or set of socioeconomic circumstances. Social norms and other key factors–such
as language spoken at home–in one community may shape how the boundaries of a community are perceived
or what components of interest are most salient.

Geospatially uniform weighting and aggregation of socioeconomic similarity, mobility or other edge weight
components, which reflects an assumption of spatially homogenous preferences, is unlikely to generate a map
that appropriately captures spatial heterogeneity. Instead, weighting may be dependent on the community
itself. In spite of these hurdles, calibration helps to achieve several things. First, it provides a validation test
for the method itself. The method’s ability to mimic some empirical communities–both in terms of reflecting
key calibration metrics and supporting qualitative descriptions of the community–provides a measure of
internal validation, demonstrating that it can reasonably reproduce empirically observed targets. It also
shows the pliability of the method and its responsiveness to a range of input factors, identifying different
communities on the basis of different interests.

Importantly, calibration can help bound algorithmic parameters–such as the resolution parameter or
socioeconomic weights in the similarity method–that affect community orientation maps. Indeed, multiple
empirical targets can be evaluated simultaneously using the latin hypercube method method described herein,
which can help quantify uncertainty surrounding community boundaries. Then, collections of feasible maps
can remain informative for characterizing districting plans in terms of community splits. For example,
leveraging distributed and high-powered computing, it is possible to evaluate how a bounded range of viable
community orientation maps are split by a single districting plan, then use statistical analyses to characterize
which plans tend to split which community orientations more. Furthermore, bounded batch map-drawing
could be combined with statistical aggregation methods–such as those proposed by McCartan et al. [2023]–to
characterize how often tessellation tiles are grouped with other tiles. This information could, for example, be
used to set transition probabilities in map drawing algorithms or evaluate whether a map drawing authority’s
decisions to assign related tiles into different districts is defensible.

Individual maps are still useful. A single map could be generated by members of the public or community
organizations to agree upon boundaries of their community. Furthermore, parameterizations associated with
multiple maps, which could be elicited through a well-structured tool or workshop environment, can be
used to reproduce maps and aggregate preferences across a number of persons or organization, potentially
facilitating agreement across a number of individuals. Of course, individual maps can still be qualitatively
informative if analyzed contextually, though map drawers and researchers should take care to avoid basing
map boundaries on an individual map unless supported by analyses that quantify parametric uncertainty.

Map drawers must be prepared to accept and interpret computational maps of communities of interest.
If presented by individuals, computational community orientation maps can be considered as no different
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from existing maps that reflect constituents’ perceptions about where boundaries should lie, even if those
perceptions are shaped by algorithmic or systematic approaches to setting community boundaries, though care
should be taken to avoid overweighing residents’ perceptions about the boundaries of communities in which
they do not live. Additionally, analyses derived using these maps are informative, providing a replicable,
systematic way to understand which tessellation elements might be grouped with others. However, legal
stakeholders, including legislatures, map drawers, and judges, will need to develop standards and practices
for interpreting and integrating computational communities into the process.

Importantly, map drawers will face the challenge of identifying rules for transparency in community
(and district) maps drawn using algorithms. The adoption of or debate around community maps without
accountability increases the risk of systemic abuses by actors that present “black-box” analyses, obfuscating
data, motivations, and conclusions, propagating and perhaps even worsening a current concern with the
process [Kim and Chen, 2021]. This is especially true with analyses derived from private and novel datasets,
which are necessarily less transparent than comparable analyses conducted with publicly available data. This
necessity opens the door to further misuse or even tampering without mechanisms for verifying analytical
source data.

To mitigate these harms, processes must be in place to allow for verification and accountability–in accor-
dance with data use agreements and privacy laws–by courts and redistricting officials. Traditional principles
for accountability in “bureaucratic mechanisms” include transparency and consistency [Trelles et al., 2023].
However, algorithms expose limitations of transparency as an ideal, as complete algorithmic transparency is
limited and can “intentionally occlude”, privilege “seeing over understanding” , and can “invoke neoliberal
models of agency” [Ananny and Crawford, 2018]. However, other regulatory mechanisms can foster account-
ability. Krafft et al. [2022] evaluated accountability mechanisms in algorithmic decision making systems;
in particular, they found that “superficial information disclosure requirements” and “comprehensive testing
and auditing... [can] make decisions traceable.” Though the computational methodology introduced herein
is not an algorithmic decision making system, the system operates similarly, with “learning” in this case
corresponding with finding an optimal community orientation based on empirical data.

Finally, the encroachment of computational methods into legal processes and statutes, including redis-
tricting processes, increases the risk of entrenching what Diver [2022] has called computational legalism, or
“an extreme species of unreflective rule-following that code can so easily impose upon citizens [Diver, 2022]”.
Adopting computational maps of communities as a standard would become a form of what Hildebrandt [2018]
identified as algorithmic regulation, or “standard-setting, monitoring and behaviour modification by means of
computational algorithms. [Hildebrandt, 2018]”. This reinforces the finding of Mac Donald and Cain [2013]
that “objective COI approaches... are at best supplements to public testimony, certainly not a substitute.
[Mac Donald and Cain, 2013]”
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Discussion

This paper has used statutory and academic definitions of communities of interest to develop a mathemat-
ical approach to identifying feasible community orientation maps using empirical data and contact graphs.
Furthermore, I have demonstrated how similarity data can be used to identify community boundaries, while
finishing with an exploration of the validity of these maps alongside some recommendations for redistricting
stakeholders. The novel method introduced herein addresses a number of problems with community identifi-
cation, including selection bias in public commentary, an often untenable community uncertainty space, and
a lack of communities of interests in map drawing algorithms.

The model discussed herein, as with any model, is limited by its assumptions that simplify the complexity
of the world it attempts to represent. Structural biases–including sampling bias, algorithmic bias, and the
unconscious biases of researchers and analysts–persist. The choice of tessellation, community detection algo-
rithm, and data used to characterize interest reflect these biases and all shape community orientations that
are produced. Even the use of Census data comes with caveats; use of Census tilings cements Census per-
spectives on what territorial regions belong together, and Census survey counts and estimates are imperfect.
The use of similarity scores and probabilities of neighbor colocation are obvious cognitive simplifications of
socio-political interests, which are driven heavily by individual experiences and perceptions.

The combination of computational methodology and “big data” can convey a false sense objectivity and
foster overconfidence in the derived products, and this method contributes to a growing body of approaches
that quantify and systematize legal entities, increasing the risk of devolution into computational legalism.
While the author expects this is unlikely to occur, these maps should be seen as a decision-making and
research aid rather than an unassailable ground truth that supplants the public input process.

These limitations, however, should not preclude the use of the approach in identifying communities of
interest given its numerous potential practical and academic benefits. It carries the potential to increase
the visibility of many communities that would otherwise be overlooked in the community process two fold.
It illuminates the boundaries of communities to map drawers in the absence of self-identification. On the
other hand, it provides members of the public easily accessible baselines that readily illustrate the normative
community of interest and can facilitate discussion, organization, and further self identification.

The use of contact graphs and community detection algorithms is versatile and can, using different em-
pirical datasets, represent numerous important constructs relevant to representation beyond socioeconomic
similarity and colocation. Political preferences, which are important signals for substantive interests, can be
imperfectly captured by incorporating results from direct ballot initiatives in states where they are carried.
A range of data are available that could characterize other policy-relevant substantive interests, such as
information about healthcare and insurance access, social and historical trends (including redlining), envi-
ronmental quality, or labor and industry. The restriction that communities do not cross certain boundaries,
such as county lines, can be incorporated using a binary co-membership along an edge. Geographic features
such as cultural and economic landmarks–including religious sites, major industrial sites, ports, commerce
and trade centers, and more–can be tied to representations of political interest and can even be combined
with cellular device data to characterize interactions themselves. Furthermore, more complex edge weighting
functions ϕij could be developed to capture how certain dimensions of interest can become more salient in
the face of other similarities or differences–for example, race and ethnicity alone misses key nuances that are
important to discerning communities within those groups, but are important between groups. There is a
frontier to explore on how interests might be best characterized quantitatively.

This method also aligns neatly with current computational approaches to evaluating legislative redistrict-
ing and can facilitate theoretical advancements into redistricting research. Notably, the approach taken in
this paper also integrates well with Markov Chain Monte Carlo methods for drawing random maps (e.g.,
Cannon et al. [2022]) given that both model states as contact graphs–next steps might integrate computa-
tional communities of interest into batch-drawn maps and use splitting standards as an evaluation metric, or
explore how districts based on transition matrices derived from weighted edges compare to those based on
unweighted edges. Chen et al. [2022] have argued for a communities of interest as a standard in redistricting,
and the introduction of systematic identification of community maps can help facilitate such a standard.
In particular, the development of a standardized approach to communities that is comparable across states
could facilitate the ability to score state maps in the context of communities, producing community maps
and scores across states that are directly comparable. The combination of exploratory communities could
further complement emerging statistical methods, such as the boundary aggregation methods proposed by
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McCartan et al. [2023], or be used to bound uncertainty in map drawers’ decisionmaking.
Maps drawn using this method are not limited to algorithmic or computational experiments and analysis

alone. The systematic graph method discussed herein could also be used to facilitate participatory or iterative
engagements with community members to evaluate where community boundaries lie; simply providing a
reasonable modeled community map can provide community members a basis from which to diverge, converse,
and evaluate where a community’s boundaries lie.

The primal question driving this research is whether the preservation of communities of interest may
provide a pathway to better representation by reducing the degree to which communities of interest and
the localized coalitions they form are divided among multiple constituencies. The approach discussed herein
facilitates a research agenda to answer the following key questions pertinent to legislative districting: can
community preservation mitigate gerrymanders by ensuring community coalitions have the opportunity for
fair representation, and, if so, under what conditions? How do map drawing algorithms–a key feature in
the future of redistricting and gerrymandering case law–respond when using edge weights representative
of shared interest? What are the tradeoffs between representational outcomes and population equality in
single member districts with large populations? Systematic community identification can help answer these
questions while providing practical support to determining territorial legislative constituencies.
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